Enzim aktivitások összehasonlító vizsgálata talajkímélő és hagyományos művelésű modellkísérletben luvisols talajokon
DOI:
https://doi.org/10.33038/jcegi.3558Kulcsszavak:
labilis szén, dehidrogenáz, β-glükozidáz, foszfatáz, mineralizációAbsztrakt
Vizsgáltuk a Luvisol talajbiológiai, enzim-aktivitását különböző talajművelési intenzitások mellett, azaz kímélő (CT), teljesen hagyományos (PT) és mérsékelt-hagyományos talajművelési gyakorlat (BR) mellett modell-kísérleti háttérrel. A klímaszabályozott növényszobában hat héten át tenyészedényes kísérletet végeztünk a háromféle talajművelésből származó talaj felhasználásával. Eredményeink azt mutatták, hogy a növényi maradványok hozzáadása növeli a talaj szervesanyag-tartalmát, amit a CT talajban lévő labilis szén magas koncentrációja is tükrözött. A hagyományos talajművelés mellett az erősebb talajművelés valószínűleg hozzájárult a PT és a BR talajok magasabb dehidrogenáz enzim aktivitásához. A nagyobb-fokú művelés csökkentette a β-glükozidáz enzim aktivitását is a hagyományos művelésű talajban (BR). A magas foszfor hozzáférhetőség a foszfatáz enzim aktivitás csökkenését váltotta ki a rendelkezésre álló foszfor mennyiségével összhangban a CT talajban. Megállapítottuk, hogy a talajok biológiai aktivitását a rendelkezésre álló szubsztrátok jelenléte befolyásolja a különböző művelésű talajokban, szoros összefüggésben a talajok nedvességtartalmával.
Hivatkozások
AHUJA, L. R. ̶ FIEDLER, F. ̶ DUNN, G. H. ̶ BENJAMIN, J. G. ̶ GARRISON, A. (1998): Changes in Soil Water Retention Curves Due to Tillage and Natural Reconsolidation. Soil Science Society of America Journal, 62(5): 1228–1233. DOI: https://doi.org/10.2136/sssaj1998.03615995006200050011x
BILANDŽIJA, D. ̶ ZGORELEC, Ž. ̶ KISIĆ, I. (2017): Influence of tillage systems on short-term soil CO2 emissions. Hungarian Geographical Bulletin, 66(1): 29–35. DOI: https://doi.org/10.15201/hungeobull.66.1.3
BIRKAS, M. ̶ DEKEMATI, I. ̶ ZOLTÁN, K. ̶ PÓSA, B. (2017): Review of soil tillage history and new challenges in Hungary. Hungarian Geographical Bulletin, 66(1): 55–64. DOI: https://doi.org/10.15201/hungeobull.66.1.6
BIRKÁS, M. ̶ JUG, D. ̶ KISIĆ, I. (2014): Book of soil tillage. Szent Istvan University Press. 322 p.
BOGUNOVIC, I. ̶ DEKEMATI, I. ̶ BIRKAS, M. (2019): Long-term effect of soil conservation tillage on soil water content , penetration resistance , crumb ratio and crusted area. Plant, Soil and Environment. DOI: https://doi.org/10.17221/249/2019-PSE
BONGIORNO, G. ̶ BÜNEMANN, E. K. ̶ OGUEJIOFOR, C. U. ̶ MEIER, J. ̶ GORT, G. ̶ COMANS, R. ̶ MÄDER, P. ̶ BRUSSAARD, L. ̶ DE GOEDE, R. (2019). Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators, 99 (September 2018): 38–50. DOI: https://doi.org/10.1016/j.ecolind.2018.12.008
BRAY, R. H. ̶ KURTZ, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59: 39–45.
CHOUDHARY, M. ̶ SHARMA, P. C. ̶ JAT, H. S. ̶ MC DONALD, A. ̶ JAT, M. L. ̶ CHOUDHARY, S. ̶ GARG, N. (2018). Soil biological properties and fungal diversity under conservation agriculture in indo-gangetic plains of india. Journal of Soil Science and Plant Nutrition, 18(4): 1142–1156. DOI: https://doi.org/10.4067/S0718-95162018005003201
CHOWANIAK, M. ̶ GŁĄB, T. ̶ KLIMA, K. ̶ NIEMIEC, M. ̶ ZALESKI, T. ̶ ZUZEK, D. (2020). Effect of tillage and crop management on runoff, soil erosion and organic carbon loss. Soil Use Management, 36: 581–593. DOI: https://doi.org/10.1111/sum.12606
DEKEMATI, I., SIMON, B., VINOGRADOV, S., & BIRKÁS, M. (2019). The effects of various tillage treatments on soil physical properties, earthworm abundance and crop yield in Hungary. Soil and Tillage Research, 194(March), 104334. DOI: https://doi.org/10.1016/j.still.2019.104334
GIANFREDA, L. ̶ RAO, M. A. ̶ PIOTROWSKA, A. ̶ PALUMBO, G. ̶ COLOMBO, C. (2005). Soil enzyme activities as affected by anthropogenic alterations: Intensive agricultural practices and organic pollution. Science of the Total Environment, 341(1–3): 265–279. DOI: https://doi.org/10.1016/j.scitotenv.2004.10.005
IBM CORP. (2019). IBM SPSS Statistics for Windows version 27.0, Armonk, NY.
IUSS WORKING GROUP WRB. (2014). World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. In World Soil Resources Reports No. 106. FAO. DOI: https://doi.org/10.1017/S0014479706394902
JAKAB, G. ̶ MADARÁSZ, B. ̶ SZABÓ, J. A. ̶ TÓTH, A. ̶ ZACHÁRY, D. ̶ SZALAI, Z. ̶ KERTÉSZ, Á. ̶ DYSON, J. (2017). Infiltration and soil loss changes during the growing season under ploughing and conservation tillage. Sustainability (Switzerland), 9, 1726. DOI: https://doi.org/10.3390/su9101726
JUG, D. ̶ ĐURĐEVIĆ, B. ̶ BIRKÁS, M. ̶ BROZOVIĆ, B. ̶ LIPIEC, J. ̶ VUKADINOVIĆ, V. ̶ JUG, I. (2019). Effect of conservation tillage on crop productivity and nitrogen use efficiency. Soil and Tillage Research. DOI: https://doi.org/10.1016/j.still.2019.104327
JUHOS K. ̶ MADARÁSZ B. ̶ KOTROCZÓ ZS. ̶ BÉNI Á. ̶ MAKÁDI M. ̶ FEKETE I. (2021). Carbon sequestration of forest soils is reflected by changes in physicochemical soil indicators - A comprehensive discussion of a long-term experiment on a detritus manipulation. Geoderma 385: 114918. DOI: https://doi.org/10.1016/j.geoderma.2020.114918
KHAN, S. ̶ SHAH, A. ̶ NAWAZ, M. ̶ KHAN, M. (2017). Impact of different tillage practices on soil physical properties , nitrate leaching and yield attributes of maize (Zea mays L .). Journal of Soil Science and Plant Nutrition, 17(1): 240–252.
KLADIVKO, E. J. (2001). Tillage systems and soil ecology. Soil and Tillage Research, 61(1–2): 61–76. DOI: https://doi.org/10.1016/S0167-1987(01)00179-9
KOTROCZÓ ZS. ̶ KOCSIS T. ̶ JUHOS K. ̶ HALÁSZ J. ̶ FEKETE I. (2022). How Does Long-Term Organic Matter Treatment Affect the Biological Activity of a Centre European Forest Soil? Agronomy 12: 2301. DOI: https://doi.org/10.3390/agronomy12102301
LAJTHA, K. ̶ BOWDEN, R.D. ̶ CROW, S. ̶ FEKETE, I. ̶ KOTROCZÓ, ZS. ̶ PLANTE, A. ̶ SIMPSON, M. J. ̶ NADELHOFFER, K. J. (2018). The detrital input and removal treatment (DIRT) network: Insights into soil carbon stabilization. Science of the Total Environment (640–641): 1112–1120. DOI: https://doi.org/10.1016/j.scitotenv.2018.05.388
MADARÁSZ, B. ̶ BÁDONYI, K. ̶ CSEPINSZKY, B. ̶ MIKA, J. ̶ KERTÉSZ, Á. (2011). Conservation tillage for rational water management and soil conservation. Hungarian Geographical Bulletin, 60(2): 117–133.
MADARÁSZ, B. ̶ JAKAB, G. ̶ SZALAI, Z. ̶ JUHOS, K. ̶ KOTROCZÓ, Z. ̶ TÓTH, A. ̶ LADÁNYI, M. (2021). Long-term effects of conservation tillage on soil erosion in Central Europe: A random forest-based approach. Soil and Tillage Research, 209. DOI: https://doi.org/10.1016/j.still.2021.104959
MALOBANE, M. E. ̶ NCIIZAH, A. D. ̶ MUDAU, F. N. ̶ WAKINDIKI, I. I. C. (2020). Tillage, Crop Rotation and Crop Residue Management Effects on Nutrient Availability in a Sweet Sorghum-Based Cropping System in Marginal Soils of South Africa. Agronomy, 10, 776. DOI: https://doi.org/10.3390/agronomy10060776
OLANDER, L. P. ̶ VITOUSEK, P. M. (2000). Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 49: 175–190.
PEIGNÉ, J. ̶ VIAN, J. F. ̶ PAYET, V. ̶ SABY, N. P. A. (2018). Soil fertility after 10 years of conservation tillage in organic farming. Soil and Tillage Research, 175 (September 2017): 194–204. DOI: https://doi.org/10.1016/j.still.2017.09.008
ROPER, M. M. ̶ GUPTA, V. V. S. R. ̶ MURPHY, D. V. (2010). Tillage practices altered labile soil organic carbon and microbial function without affecting crop yields. Australian Journal of Soil Research, 48(3), 274–285. DOI: https://doi.org/10.1071/SR09143
SARDANS, J. ̶ PEÑUELAS, J. (2004). Increasing drought decreases phosphorus availability in an evergreen Mediterranean forest. Plant and Soil, 267: 367–377.
SINSABAUGH, R. L. ̶ KLUG, M. J. ̶ COLLINS, H. P. ̶ YEAGER, P. E. ̶ PETERSEN, S. O. (1999). Characterizing Soil Microbial Communities. In G. P. Robertson, D. C. Coleman, C. Bledsoe, & P. Sollins (Eds.), Standard Soil Methods for Long Term Ecological Research (pp. 318–348). Oxford University Press. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf
SINSABAUGH, R. L. ̶ LAUBER, C. L. ̶ WEINTRAUB, M. N. ̶ AHMED, B. ̶ ALLISON, S. D. ̶ CRENSHAW, C. ̶ CONTOSTA, A. R. ̶ CUSACK, D. ̶ FREY, S. ̶ GALLO, M. E. ̶ GARTNER, T. B. ̶ HOBBIE, S. E. ̶ HOLLAND, K. ̶ KEELER, B. L. ̶ POWERS, J. S. ̶ STURSOVA, M. ̶ TAKACS-VESBACH, C. ̶ WALDROP, M. P. ̶ WALLENSTEIN, M. D. ̶ … ZEGLIN, L. H. (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11: 1252–1264. DOI: https://doi.org/10.1111/j.1461-0248.2008.01245.x
SZABÓ, P. ̶ JORDAN, GY. ̶ KOCSIS, T. ̶ POSTA, K. ̶ KARDOS, L. ̶ ŠAJN, R. ̶ ALIJAGIĆ, J. (2022). Biomonitoring and assessment of toxic element contamination in floodplain sediments and soils using fluorescein diacetate (FDA) enzymatic activity measurements: evaluation of possibilities and limitations through the case study of the Drava River floodplain. Environmental Monitoring and Assessment 194: 632. DOI: https://doi.org/10.1007/s10661-022-10301-7
KWON, T. ̶ SHIBATA, H. ̶ KEPFER-ROJAS, S. ̶ SCHMIDT, I. K. ̶ LARSEN, K. S. ̶ BEIER, C ̶ BERG, B. ̶ VERHEYEN,K. ̶ LAMARQUE, J. F. ̶ HAGEDORN, F. ̶ EISENHAUER, N. ̶ DJUKIC, I. ET AL. TEACOMPOSITION NETWORK (2021). Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter Decomposition Across Biomes. Frontiers in Forests and Global Change 4:678480. DOI: https://doi.org/10.3389/ffgc.2021.678480
VERES, Z. ̶ KOTROCZÓ, Z. ̶ MAGYAROS, K. ̶ TÓTH, J. A. ̶ TÓTHMÉRÉSZ, B. (2013). Dehydrogenase activity in a litter manipulation experiment in temperate forest soil. Acta Silvatica et Lignaria Hungarica, 9(1): 25–33. DOI: https://doi.org/10.2478/aslh-2013-0002
VEERMAN, C. ̶ PINTO CORREIA, T. ̶ BASTIOLI, C. ̶ BIRÓ, B. et al. (2020). Caring for soil is caring for life: ensure 75% of soils are healthy by 2030 for healthy food, people, nature and climate: interim report of the mission board for soil health and food, publications office. https://doi.org/10.2777/918775. EU, Directorate-General for Research and Innovation.
WANG, Z. ̶ LIU, L. ̶ CHEN, Q. ̶ WEN, X. ̶ LIU, Y. ̶ HAN, J. ̶ LIAO, Y. (2017). Conservation tillage enhances the stability of the rhizosphere bacterial community responding to plant growth. Agron. Sustain. Dev., 37(44). DOI: https://doi.org/10.1007/s13593-017-0454-6
WEAVER, M. A. ̶ ZABLOTOWICZ, R. M. ̶ KRUTZ, L. J. ̶ BRYSON, C. T. ̶ LOCKE, M. A. (2012). Microbial and vegetative changes associated with development of a constructed wetland. Ecological Indicators, 13(1): 37–45. DOI: https://doi.org/10.1016/j.ecolind.2011.05.005
WEIL, R. R. ̶ ISLAM, K. R. ̶ STINE, M. A. ̶ GRUVER, J. B. ̶ SAMSON-LIEBIG, S. E. (2003). Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. American J. Alternative Agricult., 18(1): 3–17.
WOLINSKA, A. ̶ STEPNIEWSK, Z. (2012). Dehydrogenase Activity in the Soil Environment. In R. A. Canuto (Ed.), Dehydrogenases (pp. 183–210). DOI: https://doi.org/10.5772/48294
ZHANG, Y. ̶ CHEN, L. ̶ WU, Z. ̶ SUN, C. (2011). Kinetic parameters of soil β-glucosidase. Revista Brasileira de Ciência Do Solo, 35: 1285–1291.
ZHENG, H. ̶ LIU, W. ̶ ZHENG, J. ̶ LUO, Y. ̶ LI, R. ̶ WANG, H. ̶ QI, H. (2018). Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China. PLoS ONE 13(6): e0199523. DOI: https://doi.org/10.1371/journal.pone.0199523
Downloads
Megjelent
Hogyan kell idézni
Folyóirat szám
Rovat
License
Copyright (c) 2022 Journal of Central European Green Innovation

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.