Evapotranspiration of aerobic rice in large weighing lysimeter

Authors

  • Mihály Jancsó Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary https://orcid.org/0000-0003-1934-9686
  • Árpád Székely Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary https://orcid.org/0000-0002-5336-7485
  • Tímea Szalóki Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary https://orcid.org/0000-0003-4145-6605
  • Csaba Lantos Cereal Research Non-Profit Ltd. https://orcid.org/0000-0002-2168-5681
  • Noémi Júlia Valkovszki Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary https://orcid.org/0000-0003-4504-8991
  • Csaba Bozán Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary
  • János Pauk Cereal Research Non-Profit Ltd.

DOI:

https://doi.org/10.18380/SZIE.COLUM.2022.9.2.5

Keywords:

evapotranspiration, crop coefficient, aerobic rice, water-use efficiency

Abstract

Aerobic rice production is an alternative growing method to reduce water consumption of rice and thus increase the water productivity of the system without a significant reduction of yield and quality. Evapotranspiration (ETc) of a Hungarian rice variety, ‘SZV Tünde’ under aerobic conditions was measured in large weighing lysimeter during the growing season in 2020. In our experiment, 506.7 g/m2 grain yield and a total above-ground biomass of 1140.4 g/m2 were produced with the application of 315.6 mm of irrigation. Water use-efficiency (WUE) based on the water input and the grain yield was 0.65 g/L. Total ETc for the whole season was measured as 648.3 mm. However, ETc values were ranged 2.04-3.86 mm/day, 3.57-7.90 mm/day and 0.90-4.26 mm/day at the initial, mid and end stages, respectively. Crop coefficients for the different periods of the season were calculated as Kcini=0.82, Kcmid=1.40 and Kcend=0.77. Negative effects of drought can seriously damage rice crop; therefore irrigation scheduling has significant role in successful aerobic rice cultivation. Reliable estimation of evapotranspiration rate in different crop developmental stages can promote this goal.

Author Biography

Mihály Jancsó, Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary

corresponding author
Jancso.Mihaly@uni-mate.hu

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration - Guide- lines for computing crop water requirements (Tech. Rep.). Rome: FAO - Food and Agriculture Organization of the United Nations.

Borrell, A., Garside, A., & Fukai, S. (1997). Improving efficiency of water use for irrigated rice in a semi-arid tropical environment. Field Crops Research 52(3), 231-248. doi: https://doi.org/10.1016/S0378-4290(97)00033-6

Bouman, B., Hengsdijk, H., Hardy, B., Bindraban, P., Tuong, T., Ladha, J., ... Ladha, J. (2002). Water-wise Rice Production. International Rice Research Institute. doi: https://doi.org/10.22004/AG.ECON.281822

Bouman, B., Yang, X., Wang, H., Wang, Z., Zhao, J., & Chen, B. (2006). Performance of aerobic rice varieties under irrigated conditions in North China. Field Crops Research 97(1), 53-65. doi: https://doi.org/10.1016/j.fcr.2005.08.015

Courtois, B., Frouin, J., Greco, R., Bruschi, G., Droc, G., Hamelin, C., . . . Ahmadi, N. (2012). Genetic Diversity and Population Structure in a European Collection of Rice. Crop Science 52(4), 1663-1675. doi: https://doi.org/10.2135/cropsci2011.11.0588

de Avila, L. A., Martini, L. F. D., Mezzomo, R. F., Refatti, J. P., Campos, R., Cezimbra, D. M., . . . Marchesan, E. (2015). Rice Water Use Efficiency and Yield under Continuous and Intermittent Irrigation. Agronomy Journal 107(2), 442-448. doi: https://doi.org/10.2134/agronj14.0080

Enriquez, Y., Yadav, S., Evangelista, G. K., Villanueva, D., Burac, M. A., & Pede, V. (2021). Disentangling Challenges to Scaling Alternate Wetting and Drying Technology for Rice Cultivation: Distilling Lessons From 20 Years of Experience in the Philippines. Frontiers in Sustainable Food Systems 5(1), 675818. doi: https://doi.org/10.3389/fsufs.2021.675818

Hassen, M. B., Monaco, F., Facchi, A., Romani, M., Valè, G., & Sali, G. (2017). Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems. Sustainability 9(3), 347. doi: https://doi.org/10.3390/su9030347

Ibadzade, M., Kun, Á., Székely, Á., Szalóki, T., Penksza, K., & Jancsó, M. (2020). The role of effluent water irrigation in the mineral absorption of aerobic rice varieties (Oryza sativa L.). Cereal Research Communications 49(3), 493–501. doi: https://doi.org/10.1007/s42976-020-00117-x

Irmak, S., Djaman, K., & Sharma, V. (2015). Winter Wheat (Triticum aestivum L.) Evapo- transpiration and Single (Normal) and Basal Crop Coefficients. Transactions of the ASABE 58(4), 1047–1066. doi: https://doi.org/10.13031/trans.58.11083

Jancsó, M., Balla, I., Valkovszki, N., Bozán, C., & Pauk, J. (2021). Impact of crop residues on soil water evaporation in weighing lysimeters. In 19. gumpensteiner lysimetertagung: Lysimeter und bodenwasserhaushalt: Trockenheit - bewässerung - ertragssicherheit (p. 139-142).

Jancsó, M., Kun, Á., Székely, Á., Szalóki, T., Ibadzade, M., & Bozán, C. (2019). New developments at the Lysimeter Station in Szarvas. In 18. gumpensteiner lysimetertagung (p. 155- 156).

Jancsó, M., Székely, Á., Szalóki, T., Lantos, C., & Pauk, J. (2017). Performance of rice vari- eties under aerobic conditions in Hungary. Columella – Journal of Agricultural and Environmental Sciences 4(1), 83-88. doi: https://doi.org/10.18380/SZIE.COLUM.2017.4.1.suppl

Kassai, P., & Sisák, I. (2018). The role of geology in the spatial prediction of soil properties in the watershed of Lake Balaton, Hungary. Geologia Croatica 71(1), 29-39. doi: https://doi.org/10.4154/gc.2018.04

Lantos, C., Jancsó, M., & Pauk, J. (2005). Microspore culture of small grain cereals. Acta Physiologiae Plantarum 27(4), 631-639. doi: https://doi.org/10.1007/s11738-005-0067-6

Luo, L. J. (2010). Breeding for water-saving and drought-resistance rice (WDR) in China. Journal of Experimental Botany 61(13), 3509-3517. doi: https://doi.org/10.1093/jxb/erq185

Nie, L., Peng, S., Chen, M., Shah, F., Huang, J., Cui, K., & Xiang, J. (2011). Aerobic rice for water-saving agriculture. A review. Agronomy for Sustainable Development 32(2), 411-418. doi: https://doi.org/10.1007/s13593-011-0055-8

Pauk, J., Jancsó, M., & Simon-Kiss, I. (2009). Rice Doubled Haploids and Breeding. In A. Touraev, B. P. Forster, & S. M. Jain (Eds.), Advances in haploid production in higher plants (p. 189-197). Dordrecht: Springer Netherlands. doi: https://doi.org/10.1007/978-1-4020-8854-4_16

Pimentel, D., Berger, B., Filiberto, D., Newton, M., Wolfe, B., Karabinakis, E., ... Nandagopal, S. (2004). Water Resources: Agricultural and Environmental Issues. BioScience 54(10), 909. doi: https://doi.org/10.1641/0006-3568(2004)054[0909:WRAAEI]2.0.CO;2

Prasad, R. (2011). Aerobic Rice Systems. In D. L. Sparks (Ed.), Advances in agronomy (Vol. 111, p. 207-247). Academic Press. doi: https://doi.org/10.1016/B978-0-12-387689-8.00003-5

Raboin, L.-M., Ballini, E., Tharreau, D., Ramanantsoanirina, A., Frouin, J., Courtois, B., & Ahmadi, N. (2016). Association mapping of resistance to rice blast in upland field conditions. Rice 9(1), doi: https://doi.org/10.1186/s12284-016-0131-4

Raes, D. (2012). The ETo Calculator – Evapotranspiration from a reference surface, Version 3.2 (Tech. Rep.). Rome, Italy: FAO - Food and Agriculture Organization of the United Nations.

Rana, G., & Katerji, N. (2000). Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. European Journal of Agronomy 13(2), 125-153. doi: https://doi.org/10.1016/S1161-0301(00)00070-8

Simonné Kiss, I. (2001). Six decades of rice cultivation and varietal improvement in Hungary. Hungarian Agricultural Research 10(1), 4-7.

Sulmon, C., van Baaren, J., Cabello-Hurtado, F., Gouesbet, G., Hennion, F., Mony, C., ... Gérard, C. (2015). Abiotic stressors and stress responses: What commonalities appear between species across biological organization levels? Environmental Pollution 202(1), 66-77. doi: https://doi.org/10.1016/j.envpol.2015.03.013

Székely, Á., Szalóki, T., Ibadzade, M., Pauk, J., Lantos, C., Jancsó, M., et al. (2021). Germi- nation dynamics of european rice varieties under salinity stress. Pak. J. Agric. Sci 58(1), 1–5.

Székely, Á., Szalóki, T., Lantos, C., Pauk, J., Venkatanagappa, S., & Jancsó, M. (2022). Data of selected set of rice accessions at the germination stage under cold stress. Data in Brief 41(1), 107929. doi: https://doi.org/10.1016/j.dib.2022.107929

Tabbal, D., Bouman, B., Bhuiyan, S., Sibayan, E., & Sattar, M. (2002). On-farm strategies for reducing water input in irrigated rice; case studies in the Philippines. Agricultural Water Management 56(2), 93-112. doi: https://doi.org/10.1016/S0378-3774(02)00007-0

Downloads

Published

2022-12-30

How to Cite

Jancsó, M., Székely, Árpád, Szalóki, T., Lantos, C., Valkovszki, N. J., Bozán, C., & Pauk, J. (2022). Evapotranspiration of aerobic rice in large weighing lysimeter. COLUMELLA – Journal of Agricultural and Environmental Sciences, 9(2), 5–12. https://doi.org/10.18380/SZIE.COLUM.2022.9.2.5

Most read articles by the same author(s)