A csemegekukorica párolgásdinamikájának vizsgálata Thornthwaite-Mather féle kompenzációs evapotranszspirométerben


  • Tóth Ariel Magyar Agrár- és Élettudományi Egyetem Georgikon Campus https://orcid.org/0000-0002-0355-9569
  • Gábor Soós
  • Simon Szabina Magyar Agrár- és Élettudományi Egyetem (MATE), Georgikon Campus https://orcid.org/0000-0001-5510-7014
  • Simon-Gáspár Brigitta Magyar Agrár- és Élettudományi Egyetem (MATE), Georgikon Campus




csemegekukorica, evapotranszspiráció, gyomosodás, levélfelület index, klímaváltozás


According to the data provision of the National Meteorological Service, since the early 1980’s an intense warming has begun and it is also reflected in domestic observations. In Hungary, just as in other Central European countries, the extremes of weather events are becoming more common. As a main crop, maize (sweet corn) has an outstanding national and global significance. Certainly, global warming and changes in water supply will harmfully affect the cultivability of maize too. Water stress reduces the leaf surface, therefore because of the less captured photosyntetically active radiation, biomass production and yields will be reduced. Weeds with a wider tolerance range than crops may also become increasingly dangerous competitors in field crop production because of their wide tolerance range, fertility and strong adaptability to changing climate- and precipitation conditions. In this research the effect of climate change on the evapotranspiration of maize was investigated at the Agrometeorological Research Station of MATE Georgikon Campus in Keszthely, between 21 May 2021 and 1 September 2021 in Thornthwaite-Mather type compensation evapotranspirometer. The aim of the study was to assess the main characteristics (like leaf area index, daily evapotranspiration, and yield) of sweetcorn under optimal water supply conditions. Furthermore it was also an aim to determine how weeding affects plant characteristics so half of the treatment (1 vessel of the evapotranspirometer) was kept weed-free, while the other half was exposed to natural weeding. In terms of results, positive relation between temperature and evapotranspiration was found and it has been established, that maximum temperature has a greater effect on evapotranspiration, than daily mean temperature. In case of yield indicators, the negative effect of weeding was statistically detectable and it was also pointed out, that the presence of weeds can negatively affect the quantity of crops. The results of the study was compared to a number of other researches on the subject, and it was concluded that the negative consequences of climate change, especially the increasing frequency of drought-hot periods could pose a major threat to successful maize production in the future.

Információk a szerzőről

Simon-Gáspár Brigitta, Magyar Agrár- és Élettudományi Egyetem (MATE), Georgikon Campus

Levelező szerző


Allen, R. G., Pereira, L. S., Raes, D., Smith, M. (1998). Crop evapotranspiration (guidelines for compu-ting water requirements). FAO Irrigation and Drainage Paper No. 56. Rome.

Bozsik A., Bujáki G., Bürgés Gy. (1997). Növényvédelem. Mezőgazda Kiadó

Ciscar, H. C., Iglesias, A., Feyen, L., Szabó L., …, Soria, A. (2011). Physical and economic consequences of climate change in Europe. Proceedings of the National Academy of Sciences of the United Sta-tes of America, 108(7), 2678–2683. DOI: https://doi.org/10.1073/pnas.1011612108

Cooper, M., Gho, C., Leafgren, R., Tang, T., Messina, C. (2014). Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. Journal of Experimental Botany, 65(21), 6191–6204. DOI: https://doi.org/10.1093/jxb/eru064

Dénes D. (2005). Különböző Hőösszegszámítási Módszerek Vizsgálata a Kukoricatermesztésben, Debreceni Egyetem, Agrártudományi Centrum

Farsang B., Limbek Zs., Türei G., Tóth I. J., Verba, Z. (2015). A klímaváltozás várható gazdasági hatásai Magyarországon 2020-2040. Budapest: MKIK Gazdaság- és Vállalkozáskutató Intézet, 52.

Gaál M., Quiroga, S., Fernandez-Haddad, Z. (2014). Potential impacts of climate change on agricultural land use suitability of the Hungarian counties. Regional Environmental Change, 14(2), 597–610. DOI: https://doi.org/10.1007/s10113-013-0518-3

Gombos I. (2011). Hidrológia – Hidraulika. Szent István Egyetem, Gépészmérnöki Kar, 24–35.

Hanquing, X., Zhan, T., Xiaogang, H., Jun, W., …, Junguo, L. (2019). Future increases in irrigation water requirement challenge the water-food nexus in the northeast farming region of China. Agricultu-ral Water Management, 213, 594-604. DOI: https://doi.org/10.1016/j.agwat.2018.10.045

Iderawumi, A. M., Friday, C. E. (2018). Characteristics Effects of Weed on Growth Performance and Yield of Maize (Zea Mays). Biomedical Journal of Scientific and Technical Research. 7(3), 5880-5883. DOI: https://doi.org/10.26717/bjstr.2018.07.001495

IPCC (Intergovernmental Panel on Climate Change) (2021). Climate Change 2021. The Physical Scien-ce Basis. Contribution of Working Group I to the Sixth Assessment Report of the Inter-governmental Panel on Climate Change [Masson-Delmotte,

V., Zhai P., Pirani, A., Connors, S.L. …, Zhou, B. (eds.)]. Cambridge University Press.

Irmak, S., Haman, D. Z. (2011). Evapotranspiration: Potential or reference? ABE 343. University of Florida, IFAS. Gainesville. 1-2. DOI: https://doi.org/10.32473/edis-ae256-2003

Kocsis T., Anda A. (2008). Az Éghajlatváltozás Detektálása És Hatásainak Modellezése Keszthelyen, Doktori (PhD) értekezés

Kranz, W. Irmak, S., van Donk, S., Yonts, D., Martin, D. (2008). Irrigation Management for Corn. Neb-Guide G1850.

Lamm, F. R., Abou Kheira, A. A. (2009). Corn irrigation macromanagement at the seasonal boundaries – initiating and terminating the irrigation season. Proceedings of the 2009 CPIC. Colby, Kansas, February, 24-25.

Licht, M., Archontoulis, S. (2017). Corn Water Use and Evapotranspiration. Iova State University Extension and Outreach.

Loch, J., Nosticzius, Á. (2004). Agrokémia és növényvédelmi kémia. Mezőgazda kiadó.

Lykhovyd, P. V., Ushkarenko, V. O., Lavrenko, S. O., Lavrenko, N. M., Zhuikov, O. H., Mrynskyi, I. M., Didenko, N. O. (2019). Leaf area index of sweet corn (Zea mays ssp. saccharata L.) crops de-pending on cultivation technology in the drip-irrigated conditions of the south of Ukraine. Mo-dern Phytomorphology, 13(1-4), 1-5.

Margóczy K. (1998). Természetvédelmi biológia. JatePress, Szeged.

Meza, F. J., Silva, D., Vigil, H. (2008). Climate Change Impacts on Irrigated Maize in Mediterreanean Climates: Evauation of Double Cropping as an Emerging Adaptation Alternative. Agricultural Systems, 95(1), 21-30. DOI: https://doi.org/10.1016/j.agsy.2008.03.005

Mika, J. (2002). A globális klímaváltozásról. Fizikai Szemle 2002/9, 258-268.

Ngome, A. F., Mtei, K. M., Mussgnug, F., Becker, M. (2012). Management options and soil types diffe-rentially affect weeds in maize fields of Kakamega, Western Kenya. Journal of Agricultural Scien-ce and Technology, A2, 104-114.

Pásztor L., Fodor N. (2010). The agro–ecological potential of Hungary and its prospective develop-ment due to climate change. Applied Ecology and Environmental Research, 8(3), 177–190.

Plessis, J. D. (2003). Maize production. Department of Agriculture, Directorate Agricultural Informa-tion Services Private Bag X144, Pretoria, 0001 South Africa, 38.

Rácz Cs. (2014). Kukoricaállományok Energetikai és Párolgási Viszonyainak Vizsgálata. Debreceni Egyetem Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar.

Rajcan, I., Swanton, C. J., (2001). Understanding maize-weed competition: resource competition, light quality and the whole plant. Field Crops Research, 71(2), 139-150. DOI: https://doi.org/10.1016/s0378-4290(01)00159-9

Ranum, P., Pena-Rosas, J. P., Garcia-Casal, M. N. (2014). Global maize production, utilization and consumption. Annals of the New York Academy of Sciences, 1312(1), 105-112. DOI: https://doi.org/10.1111/nyas.12396

Richter, P. (2009). A levélfelületi index mérése és modellezése. Eötvös Loránd Tudományegyetem, Meteorológiai Tanszék.

Simon B., Anda A. (2020). Az üledék és a hínár hatása a standard „a” kád párolgására. Doktori PhD értekezés, Pannon Egyetem, Georgikon Kar Meteorológia és Vízgazdálkodás Tanszék.

Smith, M. S., Riley, T. J. (1992). Direct and interactive effects of planting date, irrigation, and corn earworm (Lepidoptera: Noctuidae) damage on aflatoxin production in preharvest field corn. Journal of Economic Entomology, 85(3), 998-1006. DOI: https://doi.org/10.1093/jee/85.3.998

Széles A., Harsány E., Kith, K., Nagy J. (2018). The Effect of Fertilisation and Weather Extremities Caused by Climate Change on Maize (Zea mays L.) Yield in Hungary. Journal of Agriculture Food and Development, 2018, 4(1), 1-9. DOI: https://doi.org/10.30635/2415-0142.2018.04.1

Tyagi, N., Sharma, D. K., Luthra, S. K. (2003). Determination of evapotranspiration for maize and berseem clover. Irrigation Science, 21(4), 173-181. DOI: https://doi.org/10.1007/s00271-002-0061-3

Udvardy P. (2010). Növény- és állattani ismeretek 2. - Gabonafélék termesztése. Nyugat-magyarországi Egyetem.

Varanasi, A., Vara Prasad, P. V., Jugulam, M. (2016). Chapter Three - Impact of Climate Change Factors on Weeds and Herbicide Efficacy. Advances in Agronomy, 135, 107-146. DOI: https://doi.org/10.1016/bs.agron.2015.09.002

Zimdahl, R. L. (2004). Weed-Crop Competition: A Rewiew (second ed.). Blackwell Publishing, Ames, Iowa.




Hogyan kell idézni

Ariel, T., Soós, G., Simon, S., & Simon-Gáspár, B. (2022). A csemegekukorica párolgásdinamikájának vizsgálata Thornthwaite-Mather féle kompenzációs evapotranszspirométerben. Acta Agraria Kaposváriensis, 26(1), 55–69. https://doi.org/10.31914/aak.2851

Folyóirat szám


Környezetvédelem, környezetgazdálkodás